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Abstract. In magnetic resonance, and in particular, in superparamagnetic resonance studies at
variable temperatures, a correlation between the apparent resonance magnetic field and the apparent
linewidth is often observed. In order to account for this correlation, we consider the resonance
lineshapes resulting from different phenomenological equations of damped motion of the magnetic
moments in the cases of a linear paramagnet and of a perfect soft ferromagnet. The Bloch–
Bloembergen, modified Bloch, Gilbert, Landau–Lifshitz and Callen equations are analysed. In
most cases we obtain analytical expressions for the apparent resonance-field shift. Finally, we report
an experimental variable-temperature study of the superparamagnetic resonance of ultrafine Fe2O3
particles in sol–gel glass. Computer simulations using the Landau–Lifshitz lineshape provide good
fits of the resonance spectra at different temperatures for the same magnetic and morphological
parameters of the particles.

1. Introduction

In theoretical modelling, and in particular in numerically computer fitting magnetic resonance
spectra, the notion of resonance line broadening should be treated separately from that of the
distribution of resonance magnetic fields. Such an approach is particularly useful in the case
of systems with static disorder. One may first define a weighted distribution of the resonance
magnetic fields P(Bres,�,�,�) with the set of Euler angles (� � � ) describing the
orientation of the macroscopic axes of the sample, e.g., the crystallographic axes, with respect
to the static and microwave magnetic field, as follows:

P(Bres,�,�,�) =
∑
i,j

∫
P(H,Ω)Wij (H,Ω)δ [Bres − Bres(H,Ω)] dV (H,Ω). (1)

In equation (1) the random vector H summarizes the ensemble of magnetic (spin-
Hamiltonian) parameters (in the case of electron paramagnetic resonance (EPR) of individual
paramagnetic centres) and morphological (size and shape) characteristics of magnetic particles
(in the case of ferromagnetic resonance (FMR) or superparamagnetic resonance (SPR)
in an assembly of magnetically ordered fine particles). The second set of Euler angles
Ω = ( ϑ ϕ ψ ) describes the orientation of the local magnetic axes with respect to the
macroscopic ones. P(H,Ω) is the corresponding joint distribution density and Wij (H,Ω)

is the intensity of a particular transition. The integration is performed over distributions of
the two random vectors H and Ω. Thus, equation (1) describes the absorption spectrum for
infinitely small intrinsic linewidth (the Dirac δ-function).

† Author to whom any correspondence should be addressed. Telephone: +33 056 84 61 72; fax: +33 056 84 69 70.
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At the second stage, P(Bres,�,�,�) is convoluted with a lineshapeF [B−Bres, �B(Bres,
�, �, �)] describing various broadening mechanisms not explicitly taken into account in
P(H,Ω). This results in the following absorption intensity:

S(B,�,�,�) =
∫ ∞

−∞
P(Bres,�,�,�)F [B − Bres,�B(Bres,�,�,�)] dV (Bres,Ω). (2)

�B(Bres,�,�,�) is the individual linewidth for a paramagnetic centre or particle.
In experimental magnetic resonance studies at variable temperatures, a correlation between

the apparent resonance magnetic field and the apparent (peak-to-peak) linewidth is often
observed. In particular, in the case of SPR at low temperatures, resonance spectra broaden in
a very spectacular way and shift to lower magnetic fields. Such a behaviour was reported in
the SPR of silica-supported nickel particles [1], dispersed ultrafine Mn–Zn ferrite particles [2],
nanoscale FeOOH particles [3], nanoparticles of Co stabilized in a polymer [4] and maghemite
(γ -Fe2O3) nanoparticles in ferrofluids [5]. We have observed a similar tendency for crystallized
nanoparticles of Fe2O3 in a sol–gel glass system, as reported in section 3.

The superparamagnetism is observed in systems of magnetically ordered fine particles
(nanoparticles) dispersed in a diamagnetic matrix. The general approach to the analysis
of SPR spectra has been outlined in a recent series of papers [6–9]. The resonance
magnetic field of a given particle includes anisotropic contributions, such as those of a
magnetocrystalline anisotropy field and a demagnetizing field. Also, at low temperatures the
resonance of individual magnetic particles occurs with a considerable linewidth. As a result,
the magnetic resonance spectra of an assembly of randomly oriented particles are broadly
distributed. At elevated temperatures, thermal fluctuations of magnetic moments severely
reduce both the angular anisotropy of resonance magnetic fields and the individual linewidths,
so for nanoparticles, superparamagnetic spectral narrowing is observed. However, at lower
temperatures these fluctuations are frozen out (the blocking phenomenon) and the resonance
spectra at low temperatures become very broad (with a linewidth comparable to the resonance
field). This means that the usual assumption of narrow resonance lines (leading to Lorentzian-
type individual lineshapes) fails and one must consider in more detail the actual lineshapes
resulting from the equation of motion of the magnetic moments.

Unfortunately, in spite of a considerable number of works concerned with magnetic
resonance lineshapes, most authors limit themselves to the narrow-linewidth case. Moreover,
the few broad-lineshape expressions quoted in the literature seem to be erroneous, vide ultra.
Thus, the main object of this publication is to remedy the lack of a detailed and systematic
analysis of broad resonance lineshapes engendered by different phenomenological equations
of motion. We believe that this analysis may be of a general interest to people concerned with
magnetic resonance spectroscopy.

The structure of the present paper is as follows. Section 2 provides a survey of
different phenomenological equations describing the damping of magnetic moments. We
obtain and analyse the corresponding lineshapes and shifts between the ‘true’ and apparent
resonance fields. Section 3 is concerned with our experimental variable-temperature study of
superparamagnetic resonance spectra of ultrafine nanoparticles in sol–gel glass and illustrates
the pertinence of the above analysis.

2. Phenomenological equations for the relaxation process and lineshapes

If one neglects damping, the motion of the magnetization vector M is described by the magnetic
torque equation

Ṁ = γM ∧ Beff (3)
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where Beff is the effective magnetic field and γ is the gyromagnetic ratio. In the general case,
Beff includes the applied static and microwave magnetic fields as well as internal fields, namely
the demagnetizing field and the magnetocrystalline anisotropy field. We choose a coordinate
system where the static component of Beff , henceforth for simplicity denoted as B, and the
corresponding magnetization M0 are along the z-axis; the microwave magnetic field lies in
the perpendicular plane, b = ( bx by ).

In order to account for the relaxation of magnetic moments, a damping term must be
added to the right-hand side of equation (3). This term characterizes the torque that tends
to align the magnetization with its equilibrium orientation. The physical mechanisms of the
relaxation are quite complicated [10], so some phenomenological form of this term is used.
Below, we consider successively the cases of Bloch–Bloembergen [11, 12], modified Bloch
[13, 14], Gilbert [15], Landau–Lifshitz [16] and Callen [17] equations.

The phenomenological equations have been resolved using the Polder tensor method (p 586
of [10]). The magnetization response to b, m = (mx my ), is expressed as

m =
(

χ −iκ
iκ χ

)
b (4)

where χ and κ describe, respectively, the response to the x- and y-components of b.
In the case of a circularly polarized microwave field b± = b0e±iωt (the ± signs stand for

the two polarization directions), the dynamic susceptibility is given by

χ± = χ ∓ κ = χ ′
± − iχ ′′

±.

The two polarization directions are usually referred to as ‘resonant’, or ‘Larmor’, and
‘non-resonant’, or ‘anti-Larmor’, polarizations. For a linearly polarized microwave field
b = b0 cosωt applied along the x-axis, the complex susceptibility is

χ = χ ′ − iχ ′′ = 1
2 (χ+ + χ−) = 1

2 [χ ′
+ + χ ′

− − i(χ ′′
+ + χ ′′

−)].

The magnetic resonance absorption signal is proportional to the imaginary part of the
dynamic susceptibility. We obtained analytical forms of the resonance lineshape for the linear
polarization and both circular polarization directions of the microwave radiation. One can
easily check that in all above-quoted cases, χ ′′(B) = 1

2

[
χ ′′

+ (B) + χ ′′
−(B)

]
. Whenever possible,

χ ′′(B) has been normalized to unity [18]:∫ ∞

−∞
χ ′′(B) dB = 1. (5)

Two different cases of magnetic behaviour of the system have been considered:

(i) that of a linear paramagnet characterized by static magnetization directly proportional to
the static magnetic field, M0 = χ0B;

(ii) that of a perfect soft ferromagnet characterized by a stepwise dependence M0(B) =
M0 sgn(B) with M0 = constant.

The expressions given above are concerned with a magnetic field sweep experiment. The
resonance magnetic field is defined as B0 = −ω/γ . The static magnetic field is supposed to
be much stronger than the microwave magnetic field, so strictly speaking these expressions fail
in the immediate vicinity of B = 0. The linewidth parameter �B is defined as the half-width
at half-height in the narrow-line limit, �B � B0.

The different absorption lineshapes are displayed in figure 1 for the linear polarization and
‘resonant’ circular polarization. The corresponding derivative-of-absorption lineshapes in the
linear polarization case (the most current experimental situation) are shown in figure 2.
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Figure 1. Magnetic resonance absorption lineshapes obtained with different equations of motion:
(a) Bloch–Bloembergen, case (i), equation (7); (b) Bloch–Bloembergen, case (ii), equation (10);
(c) modified Bloch, case (i), Gilbert, case (ii), Landau–Lifshitz, case (i), equation (14); (d) modified
Bloch, case (ii), equation (18); (e) Gilbert, case (i), equation (22); (f ) Landau–Lifshitz, case (ii),
equation (26); (g) Callen, case (i), equation (30); (h) Callen, case (ii), equation (33). The linewidth
ratio is ε = �B/B0 = 1

2 in all cases and η = δB/B0 = 1
5 for the Callen lineshape. Full line: linear

polarization; dashed line: right circular polarization.
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Figure 2. Magnetic resonance derivative-of-absorption lineshapes obtained with different equ-
ations of motion (linear polarization): (a) Bloch–Bloembergen, case (i); (b) Bloch–Bloembergen,
case (ii); (c) modified Bloch, case (i), Gilbert, case (ii), Landau–Lifshitz, case (i); (d) modified
Bloch, case (ii); (e) Gilbert, case (i); (f ) Landau–Lifshitz, case (ii); (g) Callen, case (i); (h) Callen,
case (ii). The linewidth ratio is ε = �B/B0 = 1

2 in all cases and η = δB/B0 = 1
5 for the Callen

lineshape.
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2.1. The Bloch–Bloembergen equation

Bloembergen adapted Bloch’s NMR equation [12] to FMR, as follows:

Ṁ = γM ∧ Beff − M − δizM0

T
(6)

with T = ( T2 T2 T1 ) and δiz = ( 0 0 1 ); T1 and T2 are referred to, respectively, as the
spin–lattice and spin–spin relaxation times.

We define the linewidth as �B = 1/|γ |T2.
In case (i) the following lineshapes are obtained (see figures 1, 2(a)):

χ ′′(B) = 2

π

�BB
2[

(B − B0)2 + �2
B

] [
(B + B0)2 + �2

B

] (7)

χ ′′
+ (B) = 1

π

�BB

B0
[
(B − B0)2 + �2

B

] (8)

χ ′′
−(B) = − 1

π

�BB

B0
[
(B + B0)2 + �2

B

] . (9)

The χ ′′(B) form of equation (7) is normalized to unity, while those of equations (8) and (9)
are divergent.

In case (ii) the normalized lineshapes are (see figures 1, 2(b))

χ ′′(B) = B0�B |B|
arctan(B0/�B)

[
(B − B0)2 + �2

B

] [
(B + B0)2 + �2

B

] (10)

χ ′′
+ (B) = 1

2

�B sgn B

arctan(B0/�B)
[
(B − B0)2 + �2

B

] (11)

χ ′′
−(B) = −1

2

�B sgn B

arctan(B0/�B)
[
(B + B0)2 + �2

B

] . (12)

2.2. The modified Bloch equation

The Bloch–Bloembergen equation in the preceding form is unsatisfactory in, at least, two
aspects. First, it predicts that no absorption occurs in the absence of the magnetizing field,
while such zero-field absorption can be observed experimentally. Second, it leads to the absurd
conclusion that far from resonance, negative absorption of circularly polarized microwaves
should be observed (p 58 of [8], p 152 of [19]), as illustrated in figures 1(a) and 1(b).

In order to avoid these inconsistencies, the Bloch–Bloembergen equation is sometimes
modified in such a way that longitudinal relaxation takes place along the direction of the
effective magnetic field and lateral relaxation occurs at right angles to it [14]:

Ṁ = γM ∧ Beff − M − M0Beff/B

T
. (13)

In case (i) the following normalized lineshapes are obtained (see figures 1, 2(c)):

χ ′′(B) = 1

π

�B(B
2 + B2

0 + �2
B)[

(B − B0)2 + �2
B

] [
(B + B0)2 + �2

B

] (14)

χ ′′
+ (B) = 1

π

�B

(B − B0)2 + �2
B

(15)

χ ′′
−(B) = 1

π

�B

(B + B0)2 + �2
B

. (16)
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Note that for B = 0 in the case of linearly polarized radiation one gets

χ ′′(0) = 1

π

�B

(B2
0 + �2

B)
= 1

π

|γ |T2

1 + ω2T 2
2

(17)

in accordance with the Debye formula for zero-field absorption [14, 20].
In case (ii) the resonance signal shapes are as follows (they are divergent at B = 0; see

figures 1, 2(d)):

χ ′′(B) ∝ M0B0�B(B
2 + B2

0 + �2
B)

|B| [(B − B0)2 + �2
B

] [
(B + B0)2 + �2

B

] (18)

χ ′′
+ (B) ∝ M0B0�B

|B| [(B − B0)2 + �2
B

] (19)

χ ′′
−(B) ∝ M0B0�B

|B| [(B + B0)2 + �2
B

] . (20)

2.3. The Gilbert equation

Gilbert [15] suggested an equation of motion with a relaxation rate proportional to the total Ṁ :

Ṁ = γM ∧ Beff +
G

|M |M ∧ Ṁ (21)

with G > 0. We define the linewidth parameter as �B = GB0.
In case (i) one gets (see figures 1, 2(e); these lineshapes are not normalized since the

corresponding integrals are divergent):

χ ′′(B) ∝ χ0�B(B
2 + B2

0 + �2
B) |B|[

(B − B0)2 + �2
B

] [
(B + B0)2 + �2

B

] (22)

χ ′′
+ (B) ∝ χ0�B |B|

(B − B0)2 + �2
B

(23)

χ ′′
−(B) ∝ χ0�B |B|

(B + B0)2 + �2
B

. (24)

In case (ii) the normalized lineshapes are exactly the same as those obtained with the
modified Bloch equation in case (i); see equations (14), (15), (16) and figures 1, 2(c).

2.4. The Landau–Lifshitz equation

Landau and Lifshitz [16] suggested a damping term with the relaxation rate proportional to
the precessional component of Ṁ :

Ṁ = γM ∧ Beff − λ

|M |2 M ∧ (M ∧ Beff) (25)

where λ > 0. It can be shown (see p 153 of [19], p 57 of [21], [22]) that the equations (25)
and (21) are equivalent from the mathematical viewpoint if one renormalizes the gyromagnetic
ratio in equation (21) as follows: γ ′ = γ (1 + G2). If the damping is small, the Gilbert and
Landau–Lifshitz approaches become equivalent from the physical viewpoint, as well.

In case (i), with the linewidth parameter defined as �B = λ/(|γ |χ0), we obtain exactly
the same normalized lineshape expressions as with the Gilbert equation case (ii) and with the
modified Bloch equation case (i); see equations (14), (15), (16) and figures 1, 2(c).
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In case (ii), noting that �B = λB0/|γ ||M0|, the following normalized lineshapes are
obtained (see figures 1, 2(f )):

χ ′′(B) = 1

π

B2
0�B

[
(B2

0 + �2
B)B

2 + B4
0

]
[
(B − B0)2B2

0 + �2
BB

2
] [

(B + B0)2B2
0 + �2

BB
2
] (26)

χ ′′
+ (B) = 1

π

B2
0�B

(B − B0)2B2
0 + �2

BB
2

(27)

χ ′′
−(B) = 1

π

B2
0�B

(B + B0)2B2
0 + �2

BB
2
. (28)

2.5. The Callen equation

The Callen [17] dynamical equation with damping has been obtained using a quantum
mechanical approach by quantizing the spin waves into magnons:

Ṁ = γM ∧ Beff − λ

|M |2 M ∧ (M ∧ Beff) − αM . (29)

Note that the first damping term in this equation coincides with the Landau–Lifshitz
one, equation (25), while the second one has the same form as the Bloch–Bloembergen one,
equation (6), in the case of the lateral relaxation, if one puts α = 1/T2.

In case (i), noting that�B = λ/|γ |χ0 and δB = α/|γ |, we obtain the following normalized
lineshapes (see figures 1, 2(g)):

χ ′′(B) = 1

π

(�B + 2δB)B2 + �B

[
B2

0 + (�B + δB)
2
]

[
(B − B0)2 + (�B + δB)2

] [
(B + B0)2 + (�B + δB)2

] (30)

χ ′′
+ (B) = 1

π

�BB0 + δBB

B0
[
(B − B0)2 + (�B + δB)2

] (31)

χ ′′
−(B) = 1

π

�BB0 − δBB

B0
[
(B + B0)2 + (�B + δB)2

] . (32)

In case (ii), with �B = λB0/|γ |M0 and δB = α/|γ |, the lineshapes are (see figures 1,
2(h)):

χ ′′(B) = 1

N

B2
0

[
(B2

0 + �2
B)(�BB

2 + 2B0δB |B|) + (B2
0 + δ2

B)B
2
0�B

]
[
(B − B0)2B2

0 + (�B |B| + δBB0)2
] [

(B + B0)2B2
0 + (�B |B| + δBB0)2

] (33)

χ ′′
+ (B) = 1

N

B2
0 (�B + δB sgn B)

(B − B0)2B2
0 + (�B |B| + δBB0)2

(34)

χ ′′
−(B) = 1

N

B2
0 (�B − δB sgn B)

(B + B0)2B2
0 + (�B |B| + δBB0)2

(35)

where

N = π − arctan
B2

0 + �BδB

B0(�B − δB)
+ arctan

B2
0 − �BδB

B0(�B + δB)
. (36)

2.6. Discussion of the lineshapes; apparent shift of the resonance field

The same resonance lineshape as that described by equations (14), (15), (16) has been reported
by Rojo et al (equations (5) and (6) of [23]); however, these authors do not specify the equation
of motion used to deduce it.
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In a recent paper [24], Flores et al give three different expressions allegedly corresponding
to the Bloch–Bloembergen, Landau–Lifshitz and Gilbert lineshapes, respectively—their
equations (5), (6) and (7). These authors do not specify the relation between the static
magnetic field and the corresponding magnetization used by them. Note also that the χ ′′

max-
parameter used by these authors does not correspond to the maximum value of χ ′′ in the case
of equations (6) and (7) of [24].

All three equations describe odd functions of the static magnetic field, denoted as H in
[24], so H must be replaced by |H | in order to achieve consistency with elementary physical
considerations. Indeed, the absorption of linearly polarized microwaves must be an even
function of the applied static magnetic field. Thus amended, expression (5) of [24] describes
the same lineshape as our equation (10) (the Bloch–Bloembergen lineshape in case (ii), that of
a perfect soft ferromagnet). On the other hand, expression (6) of [24], contrary to the assertion
of the authors, is a solution not of the Landau–Lifshitz equation but of the Gilbert equation for
a linear paramagnet—compare with our equation (22). In contrast, expression (7) of [24] given
by Flores et al can be derived neither from the Gilbert equation nor from the Landau–Lifshitz
equation, though it looks very like a solution of the latter. Indeed, one can readily show that it
results from solving the Landau–Lifshitz equation with (erroneous) neglect of the microwave
component b of the effective magnetic field B in the damping term.

Most often, simplified expressions of the resonance lineshapes are considered, valid at
low damping rate, and hence corresponding to narrow linewidth, �B � B0. In this instance
the applied static field B is swept only in the vicinity of B0, and one gets essentially the same
(Lorentzian) lineshape in all cases considered above, namely

χ ′′(B) = 1

π

�B

(B − B0)2 + �2
B

(37)

(in the case of the Callen equation, �B should be replaced by �B + δB). In this approximation
the distinction between the responses to the linear and right-polarized microwave radiation
disappears.

Here we are interested instead in the case of broad resonance lines, so the difference
between various approaches becomes crucial. One can see from figures 1 and 2 that a
considerable apparent shift of the resonance position occurs for some lineshapes. In some
cases one can obtain analytical expressions for this shift as a function of the linewidth. In the
subsequent expressions Bmax denotes the maximum of the resonance line (corresponding to
the zero level in the experimentally recorded derivative-of-absorption line) and ε = �B/B0.

• For the Bloch–Bloembergen lineshape in case (i) (see equation (7)) and for the Gilbert
lineshape in case (i) (see equation (22)), one gets

Bmax

B0
=

√
1 + ε2. (38)

• For the Bloch–Bloembergen lineshape in case (ii) (see equation (10)), one gets

Bmax

B0
= 1√

3

√
2
√

1 + ε2 + ε4 + 1 − ε2. (39)

• For the modified Bloch lineshape in case (i), the Gilbert lineshape in case (ii) and the
Landau–Lifshitz lineshape in case (i) (see equation (14)), one gets

Bmax

B0
=

√
2
√

1 + ε2 − 1 − ε2. (40)
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• For the modified Bloch lineshape in case (ii) only relatively narrow linewidth needs to be
considered because of the divergence at B = 0. So, in the resonance range, the responses
to the linear and right-polarized microwave radiation are very close in shape. With the
latter response, having much simpler form (cf. equations (18) and (19)), one gets

Bmax

B0
= 2

3
+

1

3

√
1 − 3ε2 ≈ 1 − 1

2
ε2 ε �

√
3

3
. (41)

• For the Landau–Lifshitz lineshape in case (ii) (see equation (26)), one gets

Bmax

B0
=

√
2
√

1 + ε2 − 1 − ε2

1 + ε2
. (42)

• For the Callen lineshape in case (i) (see equation (30)), noting additionally that η = δB/B0,
one gets

(
Bmax

B0

)2

=
2(1 + η/ε)

√[
1 + (ε + η)2

]
(1 + η2) − 1 − (ε + η)2

1 + 2η/ε
. (43)

Figure 3 shows graphs of Bmax/B0 as a function of ε for some lineshapes. One can see
in the left-hand part of this figure that as ε increases, the apparent resonance positions of the
Bloch–Bloembergen lineshape cases (i), (ii) and Gilbert lineshape case (i) shift towards high
fields. In contrast, those of the modified Bloch case (i), Gilbert case (ii) and Landau–Lifshitz
lineshape cases (i), (ii) shift downwards, this tendency being particularly pronounced for the
latter case. (For the Callen lineshape case (ii), the shift of the resonance is still more striking,
as one can see from figures 1, 2.) The latter tendency is most interesting since it corresponds
to that observed with the experimental SPR spectra. In the right-hand part of figure 3 we show
the apparent shift of the resonance field for the Callen lineshape case (i) for different values of
η/ε (the case with η/ε = 0 coincides with curve (c) in the left-hand part of this figure).
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Figure 3. Left: apparent resonance shift B/B0 versus the linewidth ratio ε for various lineshapes:
(a) Bloch–Bloembergen, case (i), Gilbert, case (i), equation (38); (b) Bloch–Bloembergen, case
(ii), equation (39); (c) modified Bloch, case (i), Gilbert, case (ii), Landau–Lifshitz, case (i),
equation (40); (d) Landau–Lifshitz, case (ii), equation (42). Right: apparent resonance shift B/B0
versus the linewidth ratio ε calculated for the Callen lineshape case (i), equation (43), and various
values of the ratio η/ε. The results of computer simulations of the experimental spectra (see the
text) are indicated by the symbols �.
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3. Experimental procedure, computer simulations and discussion

In this section we analyse the temperature dependence of the X-band SPR spectra of ultrafine
nanoparticles in sol–gel glass.

The sol–gel mixture was prepared as described in [25]. Iron was added to the mixture
in the form of aqueous nitrate in order to obtain a Fe/Si molar ratio of 1%. The sample was
treated in air at 1000 ◦C for six hours to obtain silica glass with γ -Fe2O3 nanoparticles, as
confirmed by x-ray diffraction. The spectra were measured between 300 and 15 K using
a Bruker EMX spectrometer provided with an ER4112HV variable-temperature unit. The
measurement temperature was determined with an uncertainty of ±0.5 K.

As temperature lowers, one observes a decrease of the resonance-field value and a
concomitant increase of the linewidth, as shown in figure 4 for two limiting temperatures.
(The data for intermediate temperatures will be considered in detail elsewhere.)
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Figure 4. Simulations of the experimental SPR spectra (full lines) at 300 K (left) and 15 K (right).
The dashed and dash–dotted lines are the best-fit computer-generated SPR spectra for the Landau–
Lifshitz case (ii) and Lorentzian lineshapes, respectively. (At 300 K the two simulated spectra
practically coincide.)

In order to extract the characteristics of the individual linewidth, the spectra were computer
simulated using the following expression for the SPR spectrum of an assembly of particles
with distributed diameters D [6–9]:

I (B) =
∫
ϕ

∫
ϑ

∫
D

F [B − Bres(D, ϑ, ϕ),�B] fV (D) sin ϑ dD dϑ dϕ (44)

where ϑ and ϕ are the polar and azimuthal angles of B with respect to the crystallographic
axes. fV (D) is the volume fraction of particles with diameter D and volume V given by
fV (D) = n(D)V/Vt where n(D) is their relative number and Vt the total volume of the
particles. The distribution of n(D) is usually assumed to have a log-normal form and it can
be shown that in this case fV (D) is also a log-normal distribution with the same standard



9358 R Berger et al

deviation of ln D, σ :

fV (D) = exp(−σ 2/2)√
2πσDVmax

exp

[
− 1

2σ 2
ln2 D

DVmax

]
(45)

where DVmax corresponds to the maximum of fV (D).
In a recent investigation on the SPR of nanoparticles at different temperatures [9], we

have shown that the pronounced temperature dependence of the individual linewidth �B can
be well fitted by

�B = �0L(x)G(ys). (46)

In equation (46) �0 is a saturation linewidth at 0 K, L(x) = coth x − 1/x is the Langevin
function with x = MVBeff/kT , V being the particle volume. G(ys) is the value of the function

G(y) = P4(y)

L(y)
=

(
1 +

35

y2

)
1

L(y)
− 10

y
− 105

y3
(47)

for ys = K1Vs/kT , the ratio of the magnetocrystalline anisotropy energy to the thermal energy
for some reference particle of volumeVs ,K1 being the first-order anisotropy constant andP4(y)

the fourth-order Legendre polynomial.
The magnetic parameters of γ -Fe2O3 (maghemite) used in computer simulations are:

M0 = 370 kA m−1 and K1 = −4.64 kJ m−3 (cubic symmetry) [26]. The particle shapes were
assumed as ellipsoids of revolution characterized by the respective demagnetizing factors
N‖ and N⊥ in the directions parallel and perpendicular to the major axes. The spectra at
different temperatures have been calculated with the following parameters: �0 = 0.34 T,
DVmax = 6.8 nm, σ = 0.40, Vs = 6370 nm3, N⊥ − N‖ = 0.33.

In figure 4 the computer-generated spectra are shown for two different individual
lineshapes, the Lorentzian (see equation (37)) and the Landau–Lifshitz case (ii) lineshape (see
equation (26)), together with the corresponding experimental spectra. At 300 K the difference
between the two lineshapes is not visible (the two computer-generated spectra practically
coincide), while at 15 K the spectrum calculated with the Landau–Lifshitz lineshape, in contrast
to that calculated with the Lorentzian lineshape, is in good accord with the experimental
spectrum.

In figure 3 (left) we have plotted the resonance field versus individual linewidth values
extracted from the computer simulations. One can see that the experimental points closely fit
the Landau–Lifshitz curve.

With the Lorentzian lineshape, satisfactory fits to the experimental low-temperature
spectra can only be attained with additional, rather unphysical, assumptions (e.g., variation
with temperature of the form factor N⊥ −N‖, etc). On the other hand, as regards the simulation
with the Landau–Lifshitz lineshape, the discrepancy from the experimental spectrum in the
low-field range can be readily explained by the following facts. First, in the experimental
spectra there is a contribution from the EPR signal with the effective g-factor geff ≈ 4.3
arising from isolated Fe3+ ions in the glass matrix (this contribution is clearly seen in the 300 K
spectrum). Its linewidth being almost temperature-independent, this signal provides a much
more important contribution at 15 K, as the main resonance signal is drastically broadened.
Second, at low magnetic fields the assumption of field-independent static magnetization is no
longer valid. Third, we did not take into account the temperature dependence of the magnetic
parameters M0 and K1.

In spite of the simplifying assumptions made, the good fit to the experimental low-
temperature SPR spectra obtained with the Landau–Lifshitz lineshape seems quite significant.
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4. Conclusions

Different phenomenological equations for the damped motion of the magnetic moments,
namely, the Bloch–Bloembergen, modified Bloch, Gilbert, Landau–Lifshitz and Callen
equations, have been solved for two cases of magnetic behaviour: that of a linear paramagnet
and that of a perfect soft ferromagnet. Analytical lineshape expressions have been calculated
for both resonant and non-resonant circular polarization as well as for linear polarization
of the microwaves. The relations between the magnetic field value at the absorption
maximum (the apparent resonance position) and the resonance linewidth are given for different
phenomenological equations. The corresponding graphs show that, as the linewidth becomes
comparable with the resonance-field value, a conspicuous shift of the apparent resonance
position occurs (this shift can be positive or negative depending on the type of the equation of
motion).

This analysis has been applied to the case of superparamagnetic nanoparticles of γ -Fe2O3

in a sol–gel silica glass. Convincing computer fits of the superparamagnetic resonance spectra
at different temperatures have been obtained using the Landau–Lifshitz lineshape (including
both resonant and non-resonant contributions). It can be concluded that in this instance the
Landau–Lifshitz lineshape provides the most adequate description of the apparent resonance-
field shift as a function of the linewidth.

The approach outlined here can be extended to other magnetic systems exhibiting relatively
broad resonance lines. That is, the character of the correlation between the apparent resonance
fields and the linewidths may guide the choice of an appropriate phenomenological equation
and hence of an adequate theoretical lineshape expression.
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